My-library.info
Все категории

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]. Жанр: Радиотехника издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Искусство схемотехники. Том 1 [Изд.4-е]
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
275
Читать онлайн
Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] краткое содержание

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] - описание и краткое содержание, автор Пауль Хоровиц, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.

Искусство схемотехники. Том 1 [Изд.4-е] читать онлайн бесплатно

Искусство схемотехники. Том 1 [Изд.4-е] - читать книгу онлайн бесплатно, автор Пауль Хоровиц

На рис. 3.25 показан простейший истоковый повторитель.



Рис. 3.25.


Мы можем выразить амплитуду выходного сигнала, как делали это для эмиттерного повторителя в разд. 2.11, через крутизну. Имеем:

= RнiС, так как i3 пренебрежимо мал; при этом, поскольку = gmuЗИgm(u3), то = [Rнgm/(1 + Rнgm)]u3. При  >> 1/gm мы имеем хороший повторитель ( ~= u3) с коэффициентом усиления, близким к единице, хотя всегда меньше единицы.

Выходное сопротивление. Предыдущую формулу для можно было бы считать не приближенным, а точным выражением, если бы выходное сопротивление истокового повторителя было равно 1/gm, (попробуйте произвести соответствующие расчеты, рассматривая напряжение источника как источник, который будучи включен последовательно с 1/gm, работает на нагрузку ). Это точный аналог ситуации с эмиттерным повторителем, у которого выходное полное сопротивление равно = 25/IК или 1/gm. Легко показать, что истоковый повторитель имеет полное выходное сопротивление 1/gm, определив ток истока при сигнале, приложенном к выходу при заземленном затворе (рис. 3.26).



Рис. 3.26.


Ток стока в этом случае равен iCgmuЗИ = gmu, а rвых = u/iC = 1/gm.

Обычно rвых составляет несколько сот ом при токах в несколько миллиампер. Как легко видеть, истоковые повторители не столь совершенны, как эмиттерные повторители.

У данной схемы два недостатка:

1. Относительно большое выходное полное сопротивление означает, что амплитуда выходного сигнала может быть значительно меньше, чем амплитуда входного, даже при высоком полном сопротивлении нагрузки, так как любое Rн образует в сочетании с выходным сопротивлением истока делитель. Кроме того, так как ток стока меняется на протяжении периода сигнала, поэтому gm и вместе с ней выходное полное сопротивление будут изменяться, внося в выходной сигнал некоторую нелинейность (искажения). Эту ситуацию можно улучшить, используя ПТ с большой крутизной, но лучшим решением является комбинированный (ПТ-биполярный транзистор) повторитель.

2. Так как величина UЗИ, необходимая для задания определенного рабочего тока, — трудно контролируемый при изготовлении параметр, то истоковый повторитель имеет непредсказуемое смещение по постоянному току - серьезный минус при использовании в схемах со связями по постоянному току.

Активная нагрузка. Путем добавления нескольких элементов истоковый повторитель может быть очень сильно улучшен. Рассмотрим это поэтапно.

Во-первых, заменим Rн источником тока (отбирающим ток, рис. 3.27).



Рис. 3.27.


Постоянный ток истока стабилизирует напряжение UЗИ, а это устраняет нелинейности. Для простоты можно считать, что значение Rн становится бесконечным — эффект, создаваемый источником тока в качестве нагрузки. Схема на рис. 3.27, б имеет еще одно преимущество в виде малого выходного сопротивления при сохранении приближенного постоянства тока истока UБЭ/Rсм. По-прежнему, правда, существует проблема непредсказуемого (а потому ненулевого) напряжения смещения от входа к выходу UЗИ (для схемы 3.27,б — UЗИ + UБЭ). Можно было бы, конечно, просто отрегулировать Iсм к значению IС нач для конкретного ПТ в схеме 3.27, а или отрегулировать также Rсм на схеме 3.27, б. Но это решение плохо по двум причинам: а) требуется индивидуальная регулировка для каждого ПТ; б) даже и при этом  может сильно меняться (почти двукратно) при изменении температуры в рабочем диапазоне при данном UЗИ.

В более качественных схемах применяются согласованные пары ПТ с нулевым смещением (рис. 3.28).



Рис. 3.28.


T1 и Т2 — это согласованная пара на отдельном кремниевом кристалле. Т2 отбирает ток точно отвечающий условию UЗИ = 0, поэтому, так как для обоих ПТ UЗИ = 0, T1 есть повторитель с нулевым смещением. Так как оба ПТ находятся в одних и тех же температурных условиях, смещение остается почти нулевым при любой температуре. Обычно в предыдущей схеме добавляют небольшие истоковые резисторы (рис. 3.29).



Рис. 3.29.


Если чуть подумать, то будет ясно, что резистор R1 необходим, а равенство R1 = R2 гарантирует, что UвыхUвх, если Т1 и Т2 согласованы. Эта модификация схемы улучшает предсказуемость , позволяет установить значение тока стока, отличное от нач и улучшает линейность, поскольку ПТ как источник тока работает лучше при значениях рабочего тока, меньших  нач. Такой повторитель широко применяется в качестве входного каскада усилителя вертикального отклонения осциллографа.

Чтобы «выжать» из схемы все возможное, можно добавить в нее цепь следящей обратной связи со стока (чтобы скомпенсировать входную емкость) и выходной каскад на биполярном транзисторе для получения низкого полного выходного сопротивления. Тот же выходной сигнал можно затем использовать для запитки внутреннего «защитного» экрана, эффективно понижающего влияние емкости экранированного кабеля, которая в противном случае катастрофически ухудшила бы параметры схемы с высоким сопротивлением источника сигналов и свела бы на нет большое полное входное сопротивление, свойственное буферному усилителю.


3.09. Ток затвора ПТ

Мы уже говорили вначале, что ПТ вообще и МОП-транзисторы в особенности имеют практически нулевой ток затвора. Это, возможно, наиболее важное свойство ПТ и оно использовалось в описанных в предыдущем разделе высокоомных усилителях и повторителях. Существенным оно будет и в тех применениях, о которых речь впереди — самые существенные из них аналоговые ключи и цифровые логические схемы.

Разумеется, при пристальном рассмотрении мы увидим, что какой-то ток через затвор все же течет. Это важно знать, поскольку наивная модель с нулевым током гарантирует, что раньше или позже, но вы ошибетесь. Фактически к возникновению конечного (ненулевого) тока затвора приводит ряд механизмов. Даже у МОП-транзисторов изоляция затвора (двуокись кремния), несовершенна, что приводит к токам утечки, находящимся в пикоамперном диапазоне. У ПТ с p-n-переходом «изоляция» затвора на самом деле является обратносмещенным диодным переходом и механизмы тока утечки через него те же, что и у обычного диода. Кроме того, ПТ с p-n-переходом (n-канальные в особенности) подвержены дополнительному эффекту, известному как ток «ударной ионизации» затвора; он может достигать астрономических уровней. И наконец, как ПТ с p-n-переходом, так и МОП-транзисторы имеют динамический ток затвора, возникающий при воздействии сигналов переменного тока на емкость затвора; это может вызвать эффект Миллера, совсем как у биполярных транзисторов.

В большинстве случаев входной ток затвора пренебрежимо мал в сравнении с током базы биполярного транзистора, Есть, однако, ситуации, когда ПТ может фактически иметь более высокий входной ток! Рассмотрим ряд из них.

Утечка затвора. Полное входное напряжение усилителя (или повторителя) на ПТ на низких частотах ограничено утечкой затвора. В паспорте ПТ обычно указывается напряжение пробоя U3 макс, определяемое как напряжение между затвором и каналом (исток и сток закорочены), при котором ток затвора достигает 1 мкА. При меньших напряжениях затвор-канал ток утечки затвора IЗ ут, опять-таки при соединенных накоротко истоке и стоке, значительно меньше, и этот ток быстро падает до пикоамперного диапазона, когда напряжение затвор-сток существенно меньше напряжения пробоя. У МОП-транзисторов никогда нельзя допускать пробоя изоляции затвора; в данном случае утечка затвора определяется как некоторый максимальный ток утечки при определенном заданном в спецификации напряжении затвор-канал. В интегральных усилительных схемах на ПТ (например, в ОУ на ПТ) для спецификации входного тока утечки применяется не дающий правильного представления о сути дела «входной ток смещения» Iсм; обычно его величина лежит в пикоамперном диапазоне.


Пауль Хоровиц читать все книги автора по порядку

Пауль Хоровиц - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Искусство схемотехники. Том 1 [Изд.4-е] отзывы

Отзывы читателей о книге Искусство схемотехники. Том 1 [Изд.4-е], автор: Пауль Хоровиц. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.